
Journal of Statistical Physics, Vol. 93, Nos. 5/6, 1998

Received February 3, 1998; final July 28, 1998

We consider a Ginzburg–Landau equation in the interval [—e~\ e " 1 ] , e > 0 ,
with Neumann boundary conditions, perturbed by an additive white noise of
strength ^fl, and reaction term being the derivative of a function which has two
equal–depth wells at ± 1 , but is not symmetric. When « = 0, the equation has
equilibrium solutions that are increasing, and connect —1 with + 1 . We call
them instantons, and we study the evolution of the solutions of the perturbed
equation in the limit s -* 0 + , when the initial datum is close to an instanton. We
prove that, for times that may be of the order of e ~ \ the solution stays close
to some instanton whose center, suitably normalized, converges to a Brownian
motion plus a drift. This drift is known to be zero in the symmetric case, and,
using a perturbative analysis, we show that if the nonsymmetric part of the reac-
tion term is sufficiently small, it determines the sign of the drift.

KEY WORDS: Stochastic PDEs; interface dynamics; infinite-dimensional
processes.

Interface Fluctuations for the D = 1 Stochastic
Ginzburg–Landau Equation with Nonsymmetric
Reaction Term
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INTRODUCTION

We consider a stochastic perturbation of the one dimensional Ginzburg–
Landau (G–L) equation with Neumann boundary conditions (N.b.c.) in
the interval [—£"', £" ' ] , where £ is a parameter that will go to zero. The
potential term is a double well function V with equal minima at +1, and
the stochastic perturbation is given by a space time white noise, with inten-
sity s/e. The two minima of the potential give rise to two equilibrium
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homogeneous solutions of the G–L equation, the constant functions identi-
cally equal to ± 1 . They are stable, and there are several other equilibrium
configurations, all of them unstable. The more stable ones are ±<j>i-e\ wher
<̂ (<i) is an increasing function of the spatial variable x, which is close to 1
if x is close to « " ' and to —1 if x is close to —e~\ for e small. The
associated unstable manifolds have dimension 1, and the flow on it consists
on a pair of orbits connecting <^(e) with the functions ± 1 , as t-* oo. The
corresponding eigenvalue goes to zero with e, and the motion along this
manifold is in consequence very slow (see refs. 4 and 13).

Reaction diffusion equations like the G–L equation appear when
modelling phenomena such as phase transitions and evolution of interfaces
(see for instance refs. 2, 3 and 11 and the references therein for physical
motivations), and a natural question is then how the motion along the
unstable manifold of ±0<s ) (that corresponds to the interface) is affected by
the noise. In refs. 1–3 and 11, the behaviour as £->0 + of the solution of
the perturbed G–L equation was investigated, when the initial condition is
close to <f>M. Roughly, it was shown that this solution is, at time T very
close to </>(e\x + yft. BT),Wwhere B, is a Brownian motion. In ref. 2, TB ca
be the order of e"1. This is the typical time needed to see a finite shift, and
it results much shorter than that needed for the equation without noise. In
ref. 3 this result was extended for times that may grow as e~k, when the
length of the interval also is of the order of an inverse power of e. In both
cases, the potential term V was supposed to be symmetric, and the iden-
tification of the asymptotic behaviour of the displacement relies on that
symmetry. The techniques of Funaki in ref. 11 are different (also the result
and the setup are slightly different), but he also requires this symmetry, and
he posed the problem of investigating what is, if any, the effect of a defor-
mation on the form of the wells of V, still if they have the same depth.

We prove here that, in the time scale e ~1, if the potential V is nonsym-
metric, the solution of the stochastic G–L equation has a drift along the
unstable manifold of 0(6). That is, the configuration with initial condition
close to <j>(

e) is, at time s~lt,CL CLclose to <f>(e\x + Bt~pt),FOR for some /?, wh
sign, at least for a sufficiently small deformation, depends on an explicit
integral of the nonsymmetric part (see Theorem 1.1 for a precise state-
ment).

In Section 1 we introduce precisely the model, recall the results quoted
here, and state our result (Theorem 1.1). Using the techniques in ref. 2, it
is not difficult to guess what the drift /? should be, and to prove that the
shift is given by a Brownian motion plus this drift. This is done in Section 2.
But it is not clear how to conclude from the expression of P we obtain,
that it is not zero. In Section 3 we compute the derivative of P with respect
to X at X = 0, where X is the parameter that controls the deformation. This
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derivative is given in terms of the trace of the operator of the linearized
symmetric G–L equation (see Lemma 3.1). After computing this trace, we
are left with an expression for the derivative that yields, for small deforma-
tions, the sign of the drift.

The problem of studying the motion of the travelling front if we add
a small linear factor to the potential can also be treated with the same
techniques. In this case, the wells are not of equal depth, and there is a
travelling wave instead of the instanton. It can be seen that there is an
extra velocity term, but up to now we are not able to deduce, from the
expression for this velocity, whether it is against or in the same sense as the
velocity of the front for the equation without noise.

1. PRELIMINARIES AND STATEMENT OF THE MAIN RESULTS

We consider the family of processes given as solutions of the initial
value problem for the stochastic partial differential equation

with Neumann boundary conditions (N.b.c.) in the interval [— e \e ' ] ,
where e is a small parameter that will go to zero. The term a — a(t, x) is a
standard space-time white noise, and V is the derivative of the real valued
function V,

where F is a smooth positive function with support contained in (0, 1), and
X e [0,1 ] is a parameter so small that V has two equal absolute minima at
±1. We think of V as a nonsymmetric perturbation of the polynomial
V0(m) = m*/4-m2/2.

We say that m, is a solution of (1.1) with initial condition m0 if it
satisfies the integral equation
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where H^ is the heat operator with N.b.c. in [ —£ ', s ' ] and H\e\x, y)
is the corresponding kernel. The stochastic integral has to be understood in
the sense of ref. 15 and

is a Gaussian process with Holder continuous paths (see ref. 15 for details).
If m0 is continuous and satisfies N.b.c, there exists a unique continuous
solution of (1.3), as follows from ref. 8. In the sequel we will denote it
by m,.

In the case £ = 0, equation (1.1) is a deterministic evolution equation
in U, known as Ginzburg–Landau equation, which admits a stationary
solution (j>(x) satisfying

and the centering condition

(We are us ing/ ' to denote the derivative of a function/.)
We call <jTHEhe instanton. Note that the translat

satisfy (1.5) so they are also stationary solutions of the G–L equation in U.
Set

and, for any function / , let

Before stating our result, we need to introduce the kernel g(x, y, t), which
is the fundamental solution of the linearization of the G–L equation around
the instanton,
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Theorem 1.1. Let mt be the solution of equation (1.1) with initial
condition m0. Let Ce(0,1) and suppose that mo is continuous, satisfies
N.b.c. and

Then, there exists a process £,, in D([0, T]), adapted to mt, such that

for any given T>0, and

converges weakly in D[0, T~\) to

where W, is a Brownian motion starting from 0 and

with p as defined in (1.8), while the drift fi is finite and given by

Finally (recall that /? = /?( A)), we have that

Remark. The constant p defined in (1.8) is the mobility for the
deterministic G–L equation computed by Spohn, see Eq. (4.7) in ref. 14.
The expression (1.13) for ft could be simplified by using the identity (2.39)
given below. To stress the fact that it is finite, and for later purposes, we
prefer to keep it in this form. Finally, we recall that /? coincides with the
constant <x3 appearing in Funaki, ref. 12, p. 148.
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To explain how the process £, is defined, we recall the definition of
center of a function, introduced in ref. 2 for X = 0.

Definition 1.2. Given meQU), we say that x0 is the center of
m if

The connection of this definition with the G–L equation will be more
clear later, by the moment let us just recall that the center of (j>X(j is 0,
which is the point where <j>x = 0. For functions that are close tSOME
instanton, the center is well defined. The precise statement is given in the
next lemma.

for some x0 satisfying \xo\ < (1 — £') £    for some (' e ((, 1), then m has a
center £, which is unique in the set {x: \x\ ^ (1 — £) e" 1 } .mMoreover, thee
exists c>0 such that

Finally, if meCN(U) (see (2.1) below), then m has a unique center £
in the whole interval [ — e - 1 , e " 1 ] .

Now we set, as in ref. 2,

Definition 1.4. Given m e C(U), we define the function £(m) as the
center of m in case m satisfies the conditions of Lemma 1.3 for some
£e(0, 1) and we say that £(m) is "proper". Otherwise we set £(m) = 0 and
we say that it is not proper. We define

Lemma 1.3. Let meC(U), with | |w| |0 0<2, and £e(0, 1) be given.
Then, there exists S > 0 such that, if

As we will explain later, the process mt has a proper center with prob-
ability going to 1 as t ' - »0 + , up to times t of order e"1.
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Remark. A result analogous to Theorem l.l was obtained in ref. 2
in the symmetric case, that is, when X = 0. In that case, the drift /? = 0, and
the limiting process X, is a Brownian motion. In fact, the proof of (1.10)
given in ref. 2 for the case X = 0, with the process £, defined as above can
be adapted to our case. But the symmetry of VQ is crucial in ref. 2 to iden-
tify the limiting law of X% and it was not clear, at least for us, if fi was dif-
ferent from zero for some choice of F, and the way was to compute the first
term of an expansion of /? in X. Observe in fact that, from (1.14), one con-
cludes that if F is positive, then /? is positive (for small X), which is not
obvious only from (1.13). Also Funaki,(11) requires that V'o is odd, and the
drift that appears in his result comes out from the fact that he considers a
non-homogeneous noise.

2. PROOF OF THEOREM 1.1: FIRST PART

For proving Theorem 1.1, we linearize the equation (1.1) around the
instanton, and use its stability with respect to the same equation (1.1)
in U, as in refs. 1–3. It is then convenient to extend the process m, to R,
and to consider several integral equations equivalent to (1.1). We will
mention here these equations for completeness, the proofs and details can
be found in Section 2 of ref. 2.

For any continuous function / defined on the interval [—£~1,e~1],
we denote by f the extension of f to a function on the whole U. obtained
by successive reflexions around the points (2« + l )e~ 1 , neZ and we call
CN{R) the space of functions so obtained, that is

Consider then the integral equation

where H, is the heat operator in R, and the last term Zt is really Z,, with
the process Z, defined as in (1.4). Equation (2.2) has a unique continuous
solution m, if the initial datum m0 is bounded and continuous. Given m0

defined in [ —e~l, e"1] and satisfying N.b.c, m, is a solution of (1.3) with
initial datum m0 if and only if its extension to R, m,, solves (2.2), with
initial condition and noise being the extensions of m0 and Z, respectively.
In case moe CN(U), we have thus two ways of representing the process mn

one as the restriction to [ —e"1, e"1] of the solution of (2.2), and the other
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as the solution of (1.3). In general we will not use " and denote by the same
symbol a function in C ^ R ) and its restriction to [ — e"1, e " 1 ] .

Let us now introduce another integral equation, that results from
linearizing the G–L equation around the instanton. If we expand V'(ms)
around <j>Xo, and use the fact that <j>Xo is stationary for the G–L equa
we obtain from (2.2) that mt — <j>X!) satisfies the equati

Finally, the following result is a consequence of the operator Lx having a
spectral gap. We refer to refs. 2 and 9 for details.

Let us again remark that (1.10) follows from the proof of the corre-
sponding result for 2 = 0 given in Theorem 3.6 of ref. 2, which does

where gx (x, y, t) is the fundamental solution of

The process Zx<>s  is  the extension  ( as a function of CN(U)) to UY  of  ’   the
Gaussian process given by

Lemma 2.1. There are y > 0 and c > 0 such that, for any con-
tinuous bounded function / and any x0 e U,
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not depend on the symmetry. Consequently, to prove the first part of
Theorem 1.1, we only need to show that

for X and X, as defined in (1.11) and (1.12), with p in (1.13). We need a
preliminary lemma. In (2.42) below we will fix Ts, by the moment just
recall that it is of the form s~a with 5 small and positive.

Lemma 2.2. Given C>0, let m, be the solution of (1.3) with initial
condition mo = <l>X(), for some |xo | <(1 — £/2)e~'. Then, for any positiv
there exists a positive constant cp such that

and, given a small, there exists a positive constant k > 0 such that

The estimate (2.6) follows from Lemma 4.2 of ref. 2, since the proof given
there works also for nonsymmetric potentials. In that lemma it is also given
an estimate for \E^T —xo\, which is stronger than that given in (2.7) for
\E^T —xo — peTe\. The symmetry of F iis crucial for that, and the corre
sponding result is no longer valid in our case. However (2.7) is enough for
our purposes.

Proof of Lemma 2.2. According to the above discussion, we only
need to prove (2.7). In the sequel we denote by kt, i—\,2,..., suitable
positive constants. Define, for each positive 8 and x0 as in the statement,
the set

We know (see Lemma 1.3) that, if S is sufficiently small, any function
meSxJid) has a unique center t, in the interval [—e"1,^"1]. In that case,
£ — x0 is the unique zero in [ — s~l, e"1] of the function

In other words, given  meSXo(3),, i f  8  is sufficiently small, its center is
defined through
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The function C" 1 is differentiable at the point 0. Indeed, we have (recall
the definition (1.8) of p),

Since

Then, we have a third order Taylor expansion, valid for \z\ small,

Recall that

Then, for d small, we can take z = C(0) in (2.12), and from (2.9) and (2.10)
we obtain

and (j>"x (x) converges to zero exponentially as x -> ± oo, see ref. 9, it is cle
from (2.10) that for S small,
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By Lemma 4.1 of ref. 2, the process m, starting from §x satisfies, for
suitable positive constants cn and any integer n,

where

Then, for any e small enough, we can take m = mT in formula (2.14) in the
set Fe(x0). Taking expectations, and observing that \£Tt — x0 — fieTe\^
kie~\ from (1.8), (2.10) and after computing (C~1)" (0) we get that, for
any given n,

where we use o(e") to indicate a term that goes to zero faster than e". Let
us see now how to estimate the last three expectations in the r.h.s. of (2.17).
From (2.11), if e is sufficiently small,

Also, recall that m, — <f X(jncan be approximated by the Gaussian proc
•Jl'l^. More precisely, for any ae(0, 1), we have (see formula (4.83) in
ref. 2) °

where the set Ge(a, x0) satisfies
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and there are positive constants cn such that, for any integer n,

satisfies

Finally, one computes

Hereafter we will assume a e (0, \), it will be taken smaller later. From
(2.19) and (2.21), we get that, for any p^l, there exist constants cp such
that

where in the last line we have used that J dx ZX()(x, t) <j>'Xo{x) is a Brown
motion with diffusion coefficient De, satisfying

(as follows from (2.4), or see Proposition 5.4 of ref. 2). Inequality (2.25)
for p = 3 yields, after observing that (C ~1)'" is bounded in a neighbourhood
of zero, that the last expectation in the r.h.s. of (2.17) is less than

We refer to Proposition 5.4 of ref. 2 for proofs and details. Also, from
(3.10) of ref. 2, we know that, given a as above, the set
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k4[{e1-2aTl)3 + (eTe)
3/2]. From the Cauchy–Schwarz inequality, (2.18),

(2.22), (2.23), (2.24) and (2.25), we get that the second and third expecta-
tions in the r.h.s. of (2.17) are less than /c5[e1-2 ar^ + (£rc)1/2] e1/2-". We
have then proved that, for a small,

We are left with the estimate of the last term in (2.27); we multiply both
sides of the integral equation (2.3) by <j>' we expand the potential and
recall that

We obtain then the equation

with 8, a suitable continuous function on R such that <^o A W , ^ ^
<t>x0 v m , .

Then (2.15), (2.26) and the Cauchy–Schwarz inequality yield

Taking expectations, from (2.29) and (2.30) we get
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Let us estimate now the first expectation on the r.h.s. of (2.31). Since in
Fe(x0) the integral inside the expectation is bounded by k6Ts, from (2.21),
with an error o(e") we can restrict the expectation to the set Fe(x0) n
Ge(a,x0). Then, by adding and subtracting y/e Z (•, t) to (m, — ^Xo)’and
by estimating as in (2.25), from (2.19) and (2.21) we get

By (2.19) and (2.20) we conclude that the first two expectations on the
r.h.s. of (2.32) are o(e) if we take a small. By the same reasoning, it can be
seen that the same holds for the last expectation in (2.31). According to
that, from (2.27) and (2.31), the proof of (2.7) is complete if we show that

as £->0 + . From (2.15), (2.21) and (2.26), (2.33) is equivalent to
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It is not difficult to see that

1125

Next, observe that

where
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so (2.34) follows once we prove

Since the derivatives of <j>vanish at +00 (see ref. 9 for general properties
of travelling fronts), integrating by parts twice and using (1.5) we have

so that, recalling also that gXo(x + x0, y + x0, s) = g(x, y, s) for any s^O,
from the definition (1.13), (2.38) and (2.39), (2.37) becomes

as s -> 0 + . We have now

Recalling (1.8) and (2.28), we get that



From the Feynman-Kac representation for g, see (3.15) below, it is easy to
see that the first integral in the r.h.s. of (2.41) is bounded. For the other
two, since sup,&1 sup^^R g(x, y, t) is finite, we can apply Lemma 2.1 to
get

where
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Then, the l.h.s of (2.41) is bounded and so (2.7) is proved.

Proof of Theorem 1.1. Let us consider, as in ref. 2, a discretization
of the process X\. Fix

define

and set

Recall that Y* is precisely X\ when z = etn. We shall see that

weakly in D[0, T], with X as in (1.12). Following ref. 2, let

and
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with

and

It is not difficult to see that Me
r and AT* are martingales with respect to the

filtration 3F\ generated by the noise up to time e~lt (we refer to ref. 2 for
details). Moreover, by Theorem 2.6.2 of ref. 6, the condition

for some positive constant c, implies the tightness of the family P' of the
laws of Ye

T in the space D[0, T~\, and the condition

implies that any limit point P of Pe has support in the space of continuous
functions (see Theorem 2.7.8 in ref. 6). We will see that (2.49) and (2.50)
are satisfied in our case. To identify the limit, we will show that

and

From (2.51) and (2.52) it is easy to conclude that Yt — flt and
(Yt— fit)2 — pt are J^ martingales and so, from Levy's characterization of
Brownian motion, the limiting law is unique, and given by (1.12). Let us
prove now (2.49), (2.50), (2.51) and (2.52).

Proof of (2.49). From (4.46) of ref. 2 (that holds also for nonsym-
metric potentials), the strong Markov property, the fact that | £ , |<£~ ' ,
and Lemma 4.1 of ref. 2, it is enough to prove
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in the case the process starts from some instanton <^o, with \xo\^
( l - C / 2 ) e - ' . But

which is bounded from (2.7) if we choose a<^. By (2.48)

so (2.53) for i = 2 follows from (2.6).

Proof  of (2.50). By the same reasoning used in the beginning of the
proof of (2.49) it is enough to show that

with initial condition an instanton. But (2.54) follows from (2.6).

Proof of (2.51) and (2.52). Taking a < ̂  in (2.7), we obtain from
(2.42) that

As in the beginning of the proof of (2.49), it can be seen that (2.55) implies
(2.51). Analogously (2.52) follows from

To prove (2.56), square equation (2.14), with mT, restricting then to the
set Fe(x0) as in (2.17). It can be seen, after estimates similar to that of the
terms in (2.17), that
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To get (2.56) from (2.57) it is then enough to prove that

But, from (2.29) we have that

where S stands for the sum of the first two integrals on the r.h.s. of (2.29).
From (2.26),

Also, proceeding as in the proof of (2.57) it is not difficult to see that

which implies (2.58), and so (1.12) is proved.
It is an easy consequence of Lemma 2.1 that the drift /? is finite. But

it could be zero in principle. We will show in the next section that this is
not the case in general, and that (1.14) holds, thus concluding the proof of
Theorem 1.1.

3. PROOF OF THEOREM 1.1: LAST PART

We will prove (1.14) in this section. The expression (1.13) for /?
involves a rather complicated dependence on A and F and, as we have
already explained, we could not say anything about the sign of ft directly,
even for particular simple 7". In what follows, we suppose F is given, and
we write explicitely the dependence on A of /?, p, g and <j>:

With some abuse of notation with respect to the previous sections, we
simply put



Interface Fluctuations for the Stochastic GL Equation 1131

The expression (1.13) for the drift /? = /?(!) looks then

Then, we proceed to compute the right derivative of /? with respect
to X. Since /?0 = 0, the sign of this derivative gives the sign of ft in some
small interval (0, Xo).

Lemma 3.1.

where V0{m) = m4/4 — m2/2 and

Proof. Recall that we are using primes (') to denote spatial
derivatives. Differentiating (3.1) we obtain
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where we used that

and

Recalling (2.28), and observing that

where

Let us now compute \j/ and g.

Computation of if/. Recall that <l>w is the solution of (1.5) that
satisfies <̂ (̂ >(0) = 0, and that (j>'w>0 (see ref. 9 for details). Multiplying
both sides of the equation in (1.5) by <j> we obtain

(3.4) becomes
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Since from our hypothesis V($w( — ao))= V{ — 1)=— \, by integrating
(3.11) we get

so that, recalling that V{u) > - \,

Integrating this last expression from 0 to x, and replacing V by its defini-
tion, we obtain an implicit formula for <j>w:

where

Differentiating (3.12) with respect to A and evaluating at 0, by using the
definition (3.7), we get

Recalling the definition of H and substituting in the above formula, we
have

Since <j> tanh ,

which substituting in (3.13) yields (3.3).

Computation of g. By the Feynman-Kac formula,
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for B* a Brownian motion starting at x, and 1 ( ) the indicator function of
a set. Differentiating (3.15) with respect to X and evaluating at  = 0   we
obtain

Now, decomposing the integral and using standard properties of Brownian
motion, we obtain

so we have

Now, we are going to obtain a simpler expression for / , (see (3.9)).
From the equation for g0 it is not difficult to obtain that

From the expression (3.16) for g, after interchanging the order of the
integrals and using (2.28), from (3.17) we get
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Next, recall that

and



Remark. Since 0 is an eigenvalue for Lo, the Green function for Lo

does not exist. The generalized Green function permits to invert Lo in the
subspace orthogonal to that generated by the eigenfunctions corresponding
to 0, in our case, (t>'0. (See pp. 353–357 of ref. 5 for details.)

acting on the functions bounded at + oo.
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From (3.18), (3.19) and (3.20), we obtain for / t (see (3.9))

Turning now to I2, we integrate (3.10) with respect to y, using the semi-
group property, and then integrate by parts with respect to x. This yields

Recalling that \dy4%Ly)4'0(y) = 0, inserting (3.21) and (3.22) into (3.8),
one gets (3.2).

We need to simplify (3.2). To do so, we integrate first with respect
to t.

Proposition 3.2. The function

is the generalized Green function for the operator
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Proof of Proposition 3.2. According to ref. 5, it is enough to check
that G is continuous as a function of (x, y), of class C2 if x ^ y, bounded
at + oo as a function of x for each fixed y, and:

and this is easy.

Proposition 3.3. The generalized Green function for the operator
Lo (with the boundary conditions stipulated above) is:

where w0 and «j are defined in (3.29) and (3.28) respectively.

Proof. To obtain the Green function we need to solve

If we suppose that u = </>'for some function F, using that <t>'o = 2V'o(<l
we get

which can be integrated twice, yielding

where c is a constant that we will choose conveniently. Using (3.14), we
have that
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Taking c = — f, we get a solution of (3.27), which is bounded at + oo. Let
us call it «,.

Moreover, after a change of variables, and performing the integrals,

Clearly, the function uo(x) = ul( — x) is a solution of (3.27) bounded at
— oo:

Now, consider the function G(x, y)

It is easy to see that G is continuous in (x, y), C" if x^ y, and satisfies
(3.23). For (3.24), we have

Since Lo0'o = Lo(W[ — wo) = 0, the previous expression is constant. Evaluat-
ing it for instance at 0, we get easily (3.24) from (3.28) and (3.29).

Then, observe that if we take

this G satisfies (3.23), (3.24) and the regularity conditions prescribed, for
any regular A. To obtain the generalized Green function we must choose
A such that (3.30) satisfies (3.25). This gives
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It is easy to see from the definitions that A(y)^>0 as y-* ±00, and also
that LA = 0,so it has to b ee(y) = a^>'0(y) for some constantt a. To
evaluate a, let us compute — \\dxO{x,0)^'(x).SSinceKO(0) 40= «,(1()) = 0
and uo(x) = Ui(-x),

Let us compute the previous integrals. Recalling that <̂ 0 = tanh, and

Putting all this together, we have

which, from (3.30), (3.31) and the discussion above yields (3.26). Now, we
are able to simplify (3.2).
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Proof of (1.14). The expression (3.2) in terms of G is

From (3.26), after the computation of the corresponding integrals, (that we
do not report here), one obtains

and

Recall that x<f>'x) is orthogonal t  o <t>'0(x)andd that L0(x<l>'0(x))  <f>l( x).
Then, from Proposition 3.2 and the subsequent Remark, (3.34) has to be
true. The same reasoning applies to (3.35). From (3.34) and (3.35) we have

Then, from (3.3), it is not difficult to compute
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and finally, using (3.3) and V{u) = 6u,

Substituting (3.37), (3.38) and (3.39) in (3.36), and changing variables, one
gets (1.14).

Remark. The Green function G(x, y) is only used to compute (3.34)
and (3.35), so one could have only written these two formulas, that can be
checked (once one knows them!) by observing that they satisfy the corre-
sponding equations plus the orthogonality conditions. We think however
that it is worth exhibiting the explicit form, as well as the derivation of G,
since it seems to be not known, and may be useful in another contexts.
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